Truth¹

Marco Degano

Philosophical Logic 2025 10 November 2025

¹Slides also draw on teaching material by Frank Veltman.

Readings

Optional:

- ► Tarski, Alfred (1944). The semantic conception of truth and the foundations of semantics. *Philosophy and Phenomenological Research* 4(3), 341–376.
- ► Kripke, Saul (1975). Outline of a theory of truth. *The Journal of Philosophy* 72(19), 690–716.

Plan

- 1. Tarski on Truth and the Liar
- 2. Interlude: Ordinals & Transfinite Methods
- 3. Kripke's Theory of Truth

Outline

- 1. Tarski on Truth and the Liar
- 2. Interlude: Ordinals & Transfinite Methods
- 3. Kripke's Theory of Truth

Convention T and the Liar

- ightharpoonup A language \mathcal{L} is **semantically closed** when it contains:
 - \blacktriangleright names for *its own* sentences ' φ ', and
 - ▶ a truth predicate *T* applying to such sentences.
- ► We take *T* to satisfy the T-schema:

(T)
$$T('\varphi') \leftrightarrow \varphi$$

- ▶ The Liar sentence is $\lambda \equiv \neg T('\lambda')$.
- ► Then by (T) we reach a contradiction in classical logic:

$$T('\lambda') \leftrightarrow \lambda \leftrightarrow \neg T('\lambda')$$

Therefore (T) *cannot* hold unrestrictedly within a semantically closed language.

Self-reference is not necessary

A: A is false.

B: The next sentence is true.

C: The last sentence is false.

Tarski: informal picture

Alfred Tarski (1901-1983)

- ► The goal is to define 'is true' for a given formal language.
- ► We aim to preserve classical logic.
- And avoid semantic paradoxes.
- Strategy: define truth for the object-language in a richer metalanguage.

Two levels

Object language \mathcal{L}_0 :

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi)$$

Metalanguage \mathcal{L}_1 extends \mathcal{L}_0 with:

- ▶ **Naming:** if $\varphi \in Sent(\mathcal{L}_0)$ then the name φ' is available in \mathcal{L}_1 .
- ▶ Truth predicate: T_0 that applies only to names of \mathcal{L}_0 -sentences. Thus $T_0('\varphi')$ is an \mathcal{L}_1 -sentence.

No \mathcal{L}_1 -sentence may occur as an argument of T_0 .

Transparent truth across levels

The *T*-schema now lives in \mathcal{L}_1 . For any $\varphi \in \mathsf{Sent}(\mathcal{L}_0)$,

$$T_0('\varphi') \leftrightarrow \varphi.$$

Blocking the Liar precisely (typed restriction)

Attempt $\lambda \equiv \neg T_0('\lambda')$.

- \blacktriangleright λ would be an \mathcal{L}_1 -sentence (it mentions T_0).
- ▶ But T_0 takes only names of \mathcal{L}_0 -sentences.
- ► Hence $T_0('\lambda')$ is **not well-formed**. The would-be Liar is a **type** error.

Kripke's Theory of Truth

Hierarchy of languages

To speak about \mathcal{L}_1 -sentences, ascend:

- \blacktriangleright \mathcal{L}_2 adds a truth predicate T_1 for names of \mathcal{L}_1 -sentences.
- ► Transparency persists one level down:

$$T_1(T_0(p')) \leftrightarrow T_0(p') \leftrightarrow p.$$

Critical remarks: multiplicity of 'truths'

Multiplicity:

- ▶ A **hierarchy of languages** yields a family of truth predicates T_0, T_1, T_2, \ldots each restricted to \mathcal{L}_i .
- ► Yet ordinary discourse uses a single word 'true'.

Reply:

- ► Each *T_i* expresses the *same concept* of truth, but restricted to a specific object-language.
- Natural languages are (potentially) semantically closed. Paradoxes show an unrestricted truth predicate is unsafe without typing.
- ► For formal work: keep truth *language-relative* and stratified. For ordinary talk: the untyped 'true' is a convenient gloss that misleads in paradoxical contexts.

Kripke's challenge to Tarski: contingent paradoxicality

- (A) Alice: "Most of Bob's assertions about Amsterdam are false."
- (B) Bob: "Everything Alice says about Amsterdam is true."

Two contingent scenarios:

- Scenario 1 (independent falsehoods): Many of Bob's other assertions are false. Then (A) is true. Hence (B) is true. No paradox.
- ▶ Scenario 2 (knife-edge count): Bob has N other assertions, exactly N/2 true and N/2 false. Alice has exactly one assertion. One can verify that (A) and (B) are both paradoxical (true iff false).
- (A) evaluates Bob's assertions (incl. (B)) ⇒ (A) must be above (B).
 (B) evaluates Alice's assertions (incl. (A)) ⇒ (B) must be above (A).
 No consistent level assignment.
- Moreover, whether they're harmless or paradoxical depends on contingent counts. But Tarskian level-typing is fixed syntactically, not allowed to vary with the facts.

Kripke: informal picture

Saul Kripke (1940-2022)

- Start with a language where the truth predicate is **initially uninterpreted**.
- Extend its interpretation by declaring more sentences true in stages.
- The operator is monotone: once a sentence is true, it remains true at later stages.
- ► A fixed point is a stage where further extensions yield no change.
- The Liar comes out ungrounded at the least fixed point: neither true nor false.

Outline

- 1. Tarski on Truth and the Liar
- 2. Interlude: Ordinals & Transfinite Methods
- 3. Kripke's Theory of Truth

Why ordinals here?

- ▶ We will iterate a revaluation operator for the interpretation of the truth predicate through many stages until a fixed point.
- ► Finite iteration can miss fixed points.
- ► We need a notion of **stage** that goes *beyond all finite numbers* and keeps going in a well-behaved way.
- ► Ordinals give canonical **well-ordered** stages: $0, 1, 2, \dots, \omega, \omega+1, \dots$

Well-orders

Definition (Well-order)

A strict order < on a set *X* is a **well-order** iff:

- ▶ (Linear) $\forall x \neq y \in X (x < y \lor y < x)$, transitive, irreflexive.
- lackbox (No infinite descent) Every nonempty $A\subseteq X$ has a <-least element.

 $(\mathbb{N}, <)$ is well-ordered.

 $(\mathbb{Z}, <)$ is not well-ordered.

Ordinals

- ► A **well-order** is like a perfect queue: every subqueue has a *first* person.
- ► An **ordinal** is the *position* in such a queue. We package positions as sets so that 'is earlier than' becomes just ∈.
- ▶ Given any well-ordered $\langle X, < \rangle$, **rename** each $x \in X$ by the set of elements before it: $x \mapsto \{y \in X : y < x\}$
- ▶ After everyone is renamed, the collection of new names is an *ordinal* α

Ordinal Construction

$$\begin{aligned} 0 &:= \varnothing, \\ 1 &:= \{0\} = \{\varnothing\} \\ 2 &:= \{0,1\} = \{\varnothing,\{0\}\} \} \\ 3 &:= \{0,1,2\} = \ \dots \\ &\vdots &\vdots \\ n &:= \{0,1,\dots,n-1\} \\ n+1 &:= n \cup \{n\} \qquad \text{(successor)}. \end{aligned}$$

Facts:

- $ightharpoonup m < n \iff m \in n$
- ▶ each n is *transitive*: $\forall x \in n (x \subseteq n)$
- $ightharpoonup \langle n, \in \rangle$ is a well-order

From the finite ordinals we form the first limit ordinal $\omega := \{0, 1, 2, \dots\}$, which corresponds to the well-order $(\mathbb{N}, <)$.

Kripke's Theory of Truth

Successor and limit ordinals

Every ordinal is exactly one of:

- **▶** 0
- ▶ a successor $\alpha+1 := \alpha \cup \{\alpha\}$ (has a greatest element α)
- ightharpoonup a **limit** λ (nonzero ordinal with *no* greatest element)

$$\lambda \text{ is limit } \iff \lambda = \sup\{\gamma : \gamma < \lambda\} = \bigcup_{\gamma < \lambda} \gamma$$

Kripke's Theory of Truth

Transfinite induction

Given a property $P(\alpha)$ for any ordinal $\alpha.$ To prove $\forall \alpha \ P(\alpha)$ it suffices to show:

- 1. **Base:** P(0)
- 2. **Successor:** for every ordinal α , if $P(\alpha)$ holds, then $P(\alpha + 1)$ holds as well.
- 3. **Limit:** for every limit ordinal λ , if $P(\beta)$ holds for every $\beta < \lambda$, then $P(\lambda)$ holds.

Building sequences

Let S be a set and $F: \mathcal{P}(S) \to \mathcal{P}(S)$

We construct the following sequence (X_{α}) recursively:

$$X_0 := X \subseteq S, \qquad X_{\alpha+1} := F(X_\alpha), \qquad X_\lambda := \bigcup_{\beta < \lambda} X_\beta \ (\lambda \text{ limit}).$$

This abstract pattern is exactly what we will use for the revaluation sequence later on.

Worked example

Let $S = \mathbb{N}$ and $F(X) = X \cup \{ n+1 : n \in X \}$ (add all successors).

$$X_0 = \{0\},$$
 $X_1 = F(X_0) = \{0, 1\},$ $X_2 = \{0, 1, 2\},$...
$$X_{\omega} = \bigcup_{n < \omega} X_n = \mathbb{N}$$

By definition,

$$F(X_{\omega}) = X_{\omega} \cup \{ n+1 : n \in X_{\omega} \} = \mathbb{N} \cup \{1, 2, 3, \dots \} = \mathbb{N} = X_{\omega}.$$

Thus $F(X_{\omega})=X_{\omega}$, so $\rho=\omega$ is the 'stabilization' stage.

(Importantly, this was possible because this F was **monotone**: $X\subseteq Y\Rightarrow F(X)\subseteq F(Y)$. A property relevant also for our revaluation operator.)

Outline

- 1. Tarski on Truth and the Liar
- 2. Interlude: Ordinals & Transfinite Methods
- 3. Kripke's Theory of Truth

Language

Let \mathcal{L} be a first-order language with

- ightharpoonup a one-place predicate T (read: T(a) means 'a is true'), and
- for every sentence φ , an individual term φ' naming φ .

We write $S_{\mathcal{L}}$ for the set of all \mathcal{L} -sentences.

Models

A model is a triple $M = \langle D, I, \mathcal{T} \rangle$ where

- $ightharpoonup S_{\mathcal{L}} \subseteq D.$
- ► *I* assigns:
 - ▶ an element $I(a) \in D$ to each individual constant a.
 - the sentence φ to the name $'\varphi'$.
 - ▶ to each *n*-ary predicate $P \neq T$ a function $I(P) : D^n \to \{0,1\}$.
- $ightharpoonup \mathcal{T} \subseteq S_{\mathcal{L}} \times \{0,1\}$ is a (possibly partial) interpretation of T.

Satisfaction relations

We give the satisfaction clauses in a bilateral representation, which is Strong Kleene in disguise.

For $P \neq T$:

$$M \vDash P(a_1, \dots, a_n) \iff I(P)(\langle I(a_1), \dots, I(a_n) \rangle) = 1$$

 $M \vDash P(a_1, \dots, a_n) \iff I(P)(\langle I(a_1), \dots, I(a_n) \rangle) = 0$

Boolean connectives:

$$\begin{split} M \vDash \neg \varphi &\iff M \dashv \varphi \\ M \dashv \neg \varphi &\iff M \vDash \varphi \\ M \vDash \varphi \land \psi &\iff M \vDash \varphi \text{ and } M \vDash \psi \\ M \dashv \varphi \land \psi &\iff M \dashv \varphi \text{ or } M \dashv \psi \\ M \vDash \varphi \lor \psi &\iff M \vDash \varphi \text{ or } M \vDash \psi \\ M \dashv \varphi \lor \psi &\iff M \dashv \varphi \text{ and } M \dashv \psi \\ M \vDash \varphi \to \psi &\iff M \dashv \varphi \text{ or } M \vDash \psi \\ M \dashv \varphi \to \psi &\iff M \vDash \varphi \text{ and } M \dashv \psi \end{split}$$

Satisfaction relations

Quantifiers:

$$M \vDash \exists x \, \varphi \iff M \vDash \varphi[a/x]$$
 for some individual constant a $M \vDash \exists x \, \varphi \iff M \vDash \varphi[a/x]$ for all individual constant a $M \vDash \forall x \, \varphi \iff M \vDash \varphi[a/x]$ for all individual constant a $M \vDash \forall x \, \varphi \iff M \vDash \varphi[a/x]$ for some individual constant a

Truth predicate:

$$M \vDash T(a) \iff \langle I(a), 1 \rangle \in \mathcal{T}$$

 $M \vDash T(a) \iff \langle I(a), 0 \rangle \in \mathcal{T}$

Total vs Partial

Definition (Consistency / No-gluts)

For each $\varphi \in S_{\mathcal{L}}$,

not both
$$\langle \varphi, 1 \rangle \in \mathcal{T}$$
 and $\langle \varphi, 0 \rangle \in \mathcal{T}$

At most one label per sentence, but gaps are allowed.

Definition (Totality / No-gaps)

For each $\varphi \in S_{\mathcal{L}}$,

$$\langle \varphi, 1 \rangle \in \mathcal{T} \text{ or } \langle \varphi, 0 \rangle \in \mathcal{T}$$

Every sentence gets a label. $Consistency + Totality \Rightarrow exactly one label per sentence.$

Transparent truth?

Can we have full transparency

$$M \vDash T('\varphi') \iff M \vDash \varphi$$

for all φ while allowing self-reference and a total \mathcal{T} ?

No: in the presence of a Liar name l with $I(l) = \neg T(l)$, transparency forces T to be both true and false of $\neg T(l)$.

Example: the Liar

Let l be a constant with $I(l) = \neg T(l)$. Then

$$M \models T(' \neg T(l)') \iff \langle I(' \neg T(l)'), 1 \rangle \in \mathcal{T} \iff \langle \neg T(l), 1 \rangle \in \mathcal{T}$$

But:

$$M \vDash \neg T(l) \iff M \dashv T(l) \iff \langle I(l), 0 \rangle \in \mathcal{T} \iff \langle \neg T(l), 0 \rangle \in \mathcal{T}$$

Thus full transparency with total \mathcal{T} is not possible.

We assume Consistency but not Totality, so unlabelled (undefined) sentences can occur.

Revaluation operator

Given
$$M=\langle D,I,\mathcal{T}\rangle$$
, define $J(M)=\langle D,I,J(\mathcal{T})\rangle$ by
$$\langle \varphi,1\rangle\in J(\mathcal{T})\iff M\vDash\varphi$$

$$\langle \varphi,0\rangle\in J(\mathcal{T})\iff M\dashv\varphi$$

We call J(M) the *revaluation* of M, and J(T) the *revaluation* of T.

A valuation $\mathcal T$ is *coherent* iff $\mathcal T\subseteq J(\mathcal T)$ (soundness w.r.t. the induced semantics).

Warm-up example

Let $M=\langle D,I,\mathcal{T}\rangle$ with $\mathcal{T}=\varnothing.$ For a predicate $P\neq T$ with I(P)(I(a))=1,

Initial Model:

- ightharpoonup M
 otin P(a)
- $ightharpoonup M \not\vDash T('P(a)')$
- ▶ ...

First revaluation:

- $\blacktriangleright J(M) \models P(a)$
- $ightharpoonup J(M) \vDash T('P(a)')$
- $ightharpoonup J(M) \not\vDash T('T('P(a)')')$
- ▶ ..

Second revaluation:

- $ightharpoonup J(J(M)) \vDash P(a)$
- $ightharpoonup J(J(M)) \vDash T('P(a)')$
- $ightharpoonup J(J(M)) \vDash T('T('P(a)')')$
- ▶ ...

Example: the Liar

'This sentence is false.'

Assume a constant l with $I(l) = \neg T(l)$ and abbreviate $\lambda := \neg T(l)$.

Let $\mathcal{T}:=\{\langle\lambda,0\rangle\}$ (i.e., we set the Liar to be false). To be coherent we need $\langle\lambda,0\rangle\in J(\mathcal{T})$:

$$\langle \lambda, 0 \rangle \in J(\mathcal{T}) \iff M \dashv \lambda$$
 $\iff M \models T(l)$
 $\iff \langle I(l), 1 \rangle \in \mathcal{T}$
 $\iff \langle \lambda, 1 \rangle \in \mathcal{T}$

But $\langle \lambda, 1 \rangle \notin \mathcal{T}$, so $\langle \lambda, 0 \rangle \notin J(\mathcal{T})$ and $\mathcal{T} \nsubseteq J(\mathcal{T})$. Hence \mathcal{T} is incoherent.

 $\mathcal{T}' := \{\langle \lambda, 1 \rangle\}$ is incoherent, too.

 $(\mathcal{T} = \{ \langle \neg T(l), 0 \rangle, \langle \neg T(l), 1 \rangle \}$ would be coherent, but inconsistent.)

The Truth-teller

'This sentence is true.'

Assume a constant t with I(t) = T(t) and write $\tau := T(t)$.

The valuations

$$\mathcal{T}_+ := \{\langle \tau, 1 \rangle\}$$
 and $\mathcal{T}_- := \{\langle \tau, 0 \rangle\}$

are both coherent

$$\langle \tau, 1 \rangle \in J(\mathcal{T}_{+}) \iff M \vDash \tau$$

$$\iff M \vDash T(t)$$

$$\iff \langle I(t), 1 \rangle \in \mathcal{T}_{+}$$

$$\iff \langle T(t), 1 \rangle \in \mathcal{T}_{+}$$

Stability of Revaluation

A useful lemma is the monotonicity of the revaluation J.

Lemma (Monotonicity of J)

Fix D and I. Let $M=\langle D,I,\mathcal{T}\rangle$ and $M'=\langle D,I,\mathcal{T}'\rangle$ with $\mathcal{T}\subseteq\mathcal{T}'$. Then the revaluation operator J is monotone:

$$J(\mathcal{T}) \subseteq J(\mathcal{T}')$$

(The proof is by induction, and you will prove this in your assignment. Be careful on what counts as the atomic case)

Revaluation sequence

Let $M = \langle D, I, \mathcal{T} \rangle$ be a model.

Define the sequence of valuations (\mathcal{T}_{σ}) and models $M_{\sigma} = \langle D, I, \mathcal{T}_{\sigma} \rangle$ recursively as follows:

- $ightharpoonup \mathcal{T}_0 \coloneqq \mathcal{T}$
- ▶ $\mathcal{T}_{\sigma+1} \coloneqq J(\mathcal{T}_{\sigma})$ for every ordinal σ
- $\blacktriangleright \ \mathcal{T}_{\lambda} \coloneqq \bigcup_{\tau < \lambda} \mathcal{T}_{\tau} \text{ for every limit ordinal } \lambda$

Visually: $M_0, M_1, \ldots, M_{\omega}, M_{\omega+1}, \ldots$

Monotonicity

Theorem (Monotonicity of the revaluation sequence)

Fix D and I. Let $M = \langle D, I, \mathcal{T} \rangle$ be a model with *coherent* \mathcal{T} (i.e. $\mathcal{T} \subseteq J(\mathcal{T})$), where J is the revaluation operator computed relative to D, I. Define the revaluation sequence recursively:

$$\mathcal{T}_0 \coloneqq \mathcal{T} \qquad \mathcal{T}_{\sigma+1} \coloneqq J(\mathcal{T}_{\sigma}) \qquad \mathcal{T}_{\lambda} \coloneqq \bigcup_{\tau < \lambda} \mathcal{T}_{\tau} \ (\lambda \text{ limit})$$

Then for all ordinals σ, τ with $\sigma < \tau$,

$$\mathcal{T}_{\sigma} \subseteq \mathcal{T}_{\tau}$$

Stepwise growth

A standard result for increasing sequences:

Lemma (Stepwise growth)

For every ordinal α , we have $\mathcal{T}_{\alpha} \subseteq \mathcal{T}_{\alpha+1}$

Proof (transfinite induction on α):

Base
$$(\alpha = 0)$$
: $\mathcal{T}_0 \subseteq J(\mathcal{T}_0) = \mathcal{T}_1$.

Successor. If $\mathcal{T}_{\beta} \subseteq \mathcal{T}_{\beta+1}$, then by monotonicity

$$\mathcal{T}_{\beta+1} = J(\mathcal{T}_{\beta}) \subseteq J(\mathcal{T}_{\beta+1}) = \mathcal{T}_{\beta+2}.$$

Limit: Let λ be limit and take $x \in \mathcal{T}_{\lambda} = \bigcup_{\beta < \lambda} \mathcal{T}_{\beta}$. Then $x \in \mathcal{T}_{\beta}$ for some $\beta < \lambda$, hence by the inductive hypothesis

$$x \in \mathcal{T}_{\beta+1} = J(\mathcal{T}_{\beta}) \subseteq J(\mathcal{T}_{\lambda}) = \mathcal{T}_{\lambda+1}$$
. Thus $\mathcal{T}_{\lambda} \subseteq \mathcal{T}_{\lambda+1}$.

Monotonicity

If
$$\sigma < \tau$$
 then $\mathcal{T}_{\sigma} \subseteq \mathcal{T}_{\tau}$

Proof (transfinite induction on τ , with σ fixed).

- ▶ *Base* $(\tau = 0)$: vacuous, since there is no $\sigma < 0$.
- ▶ Successor $(\tau = \kappa + 1)$: then $\sigma \leq \kappa$. By IH, $\mathcal{T}_{\sigma} \subseteq \mathcal{T}_{\kappa}$. By Stepwise Growth, $\mathcal{T}_{\kappa} \subseteq \mathcal{T}_{\kappa+1} = \mathcal{T}_{\tau}$. Hence $\mathcal{T}_{\sigma} \subseteq \mathcal{T}_{\tau}$.
- ▶ Limit $(\tau = \lambda)$: $\mathcal{T}_{\lambda} = \bigcup_{\rho < \lambda} \mathcal{T}_{\rho}$, so for any $\sigma < \lambda$, $\mathcal{T}_{\sigma} \subseteq \mathcal{T}_{\lambda}$.

Fixed points

Theorem (Fixed point and stabilization)

Fix D and I. Let $M=\langle D,I,\mathcal{T}\rangle$ be a model with *coherent* \mathcal{T} (i.e. $\mathcal{T}\subseteq J(\mathcal{T})$), and define the revaluation sequence by:

$$\mathcal{T}_0 \coloneqq \mathcal{T} \qquad \mathcal{T}_{\sigma+1} \coloneqq J(\mathcal{T}_{\sigma}) \qquad \mathcal{T}_{\lambda} \coloneqq \bigcup_{\tau < \lambda} \mathcal{T}_{\tau} \ (\lambda \text{ limit})$$

Then there exists a unique ordinal ρ such that:

(i)
$$\forall \sigma < \tau \leq \rho : \mathcal{T}_{\sigma} \subsetneq \mathcal{T}_{\tau}$$
 (ii) $\forall \sigma \geq \rho : \mathcal{T}_{\sigma} = \mathcal{T}_{\rho}$

In particular, $J(\mathcal{T}_{\rho}) = \mathcal{T}_{\rho}$, so \mathcal{T}_{ρ} is the **fixed point** of J generated by \mathcal{T} . We write $\mathcal{T}^* := \mathcal{T}_{\rho}$ for this point.

The sequence is increasing

Fix D and I. Write $(\mathcal{T}_{\alpha})_{\alpha \in \mathrm{Ord}}$ for the transfinite sequence $\alpha \mapsto \mathcal{T}_{\alpha}$ of valuations.

Let $S := S_{\mathcal{L}} \times \{0,1\}$, where $S_{\mathcal{L}}$ is the set of all \mathcal{L} -sentences.

Each stage \mathcal{T}_{α} is a set of labeled sentences, hence

$$\mathcal{T}_{\alpha} \subseteq \{\langle \varphi, t \rangle : \varphi \in S_{\mathcal{L}}, \ t \in \{0, 1\}\} = S \quad \text{for all } \alpha.$$

By Monotonicity, for all ordinals $\sigma < \tau$,

$$\mathcal{T}_{\sigma} \subseteq \mathcal{T}_{\tau}$$

Thus $(\mathcal{T}_{\alpha})_{\alpha \in \mathrm{Ord}}$ forms a (weakly) increasing chain of subsets of S (i.e., $\sigma < \tau \Rightarrow \mathcal{T}_{\sigma} \subseteq \mathcal{T}_{\tau}$, and $\mathcal{T}_{\alpha} \subseteq S$ for all α).

Some equality must occur

Each stage is a valuation set $\mathcal{T}_{\alpha} \subseteq S$, where $S := S_{\mathcal{L}} \times \{0,1\}$. Hence there are *at most* $|\mathcal{P}(S)|$ distinct stages.

Let $\kappa := |\mathcal{P}(S)|^+$ (the successor of $|\mathcal{P}(S)|$), so $|\mathcal{P}(S)| < \kappa$. Consider the function $f : \{\alpha \in \operatorname{Ord} : \alpha < \kappa\} \mapsto \mathcal{P}(S), \qquad f(\alpha) := \mathcal{T}_{\alpha}.$

If the family $(\mathcal{T}_{\alpha})_{\alpha<\kappa}$ were pairwise distinct, then f would be injective, hence $\kappa\leq |\mathcal{P}(S)|$, which is impossible.

Thus there exist $\alpha < \beta < \kappa$ with $\mathcal{T}_{\alpha} = \mathcal{T}_{\beta}$. Since the sequence is increasing, for every γ with $\alpha \leq \gamma \leq \beta$,

$$\mathcal{T}_{\alpha} \subseteq \mathcal{T}_{\gamma} \subseteq \mathcal{T}_{\beta} = \mathcal{T}_{\alpha},$$

so $\mathcal{T}_{\gamma} = \mathcal{T}_{\alpha}$. In particular $\mathcal{T}_{\alpha+1} = \mathcal{T}_{\alpha}$.

Set $E := \{\delta : \mathcal{T}_{\delta} = \mathcal{T}_{\delta+1}\}$. Then $E \neq \emptyset$. Let $\rho := \min E$ (exists by well-ordering). Then:

- ▶ If $\sigma < \tau \leq \rho$, we cannot have $\mathcal{T}_{\sigma} = \mathcal{T}_{\tau}$. By monotonicity, $\mathcal{T}_{\sigma} \subsetneq \mathcal{T}_{\tau}$.
- $\mathcal{T}_{\rho} = \mathcal{T}_{\rho+1} = J(\mathcal{T}_{\rho})$, so \mathcal{T}_{ρ} is a fixed point.

Stability from ρ on

We prove by transfinite induction on $\sigma \geq \rho$ that $\mathcal{T}_{\sigma} = \mathcal{T}_{\rho}$.

- ▶ Base $\sigma = \rho$: $\mathcal{T}_{\rho} = \mathcal{T}_{\rho}$.
- ▶ Successor $\sigma = \gamma + 1 \ge \rho + 1$: By IH, $\mathcal{T}_{\gamma} = \mathcal{T}_{\rho}$, and since \mathcal{T}_{ρ} is a fixed point $(\mathcal{T}_{\rho} = J(\mathcal{T}_{\rho}))$,

$$\mathcal{T}_{\sigma} = J(\mathcal{T}_{\gamma}) = J(\mathcal{T}_{\rho}) = \mathcal{T}_{\rho}$$

▶ **Limit** $\lambda > \rho$: By IH, $\mathcal{T}_{\beta} = \mathcal{T}_{\rho}$ for all $\rho \leq \beta < \lambda$, and by monotonicity $\mathcal{T}_{\beta} \subseteq \mathcal{T}_{\rho}$ for $\beta < \rho$. Thus

$$\mathcal{T}_{\lambda} = igcup_{eta < \lambda} \mathcal{T}_{eta} = \Big(igcup_{eta <
ho} \mathcal{T}_{eta}\Big) \ \cup \ \Big(igcup_{eta \le eta < \lambda} \mathcal{T}_{eta}\Big) \subseteq \mathcal{T}_{
ho} \cup \mathcal{T}_{
ho} = \mathcal{T}_{
ho}$$

while $\mathcal{T}_{\rho} \subseteq \mathcal{T}_{\lambda}$ since $\rho < \lambda$. Hence $\mathcal{T}_{\lambda} = \mathcal{T}_{\rho}$.

Therefore $\mathcal{T}_{\sigma} = \mathcal{T}_{\rho}$ for every $\sigma \geq \rho$.

Minimal fixed point

Corollary

Fix D and I, and let J be the revaluation operator (relative to D, I). Let $\mathcal{T}, \mathcal{T}'$ be coherent with $\mathcal{T} \subseteq \mathcal{T}'$. Let \mathcal{T}^* and \mathcal{T}'^* be the fixed points generated by \mathcal{T} and \mathcal{T}' , respectively. Then

$$\mathcal{T}^* \subseteq \mathcal{T}'^*$$

In particular, \emptyset^* is the least fixed point.

Kinds of sentences

fixed points behaviour		example
true in all, false in no	grounded true	
true in some, false in no		(Exercise) ²
false in all, true in no	grounded false	
false in some, true in no		(Assignment)
true in no, false in no	paradoxical	the liar
true in some, false in some	biconsistent	the truth teller

Read *some* = *some but not all*

 $^{^{2}\}varphi = T(t) \vee \neg T(t) \text{ in models in which } I(t) = T(t).$

Some reminders

- ▶ Before proving the statements, some reminders and facts.
- ▶ Throughout the examples we fix D and specify I. The initial valuation \mathcal{T} varies.
- ▶ For any initial \mathcal{T} , iterating the revaluation operator J by the transfinite sequence yields a fixed point \mathcal{T}^* with $J(\mathcal{T}^*) = \mathcal{T}^*$, where transparency holds. We write $M^* := \langle D, I, \mathcal{T}^* \rangle$.
- Evaluation at a fixed point:

$$\varphi$$
 is **true** at $\mathcal{T}^* \iff \langle \varphi, 1 \rangle \in \mathcal{T}^* \ [M^* \models \varphi \text{ by transparency}]$ φ is **false** at $\mathcal{T}^* \iff \langle \varphi, 0 \rangle \in \mathcal{T}^* \ [M^* \dashv \varphi \text{ by transparency}]$ otherwise φ is **unlabelled/undefined** at \mathcal{T}^*/M^*

- ightharpoonup All initial \mathcal{T} need to be coherent and consistent.
- ► Consistency is preserved by the *J*-iteration and at fixed points (you will prove this in your assignment).

Grounded (T-free) sentences are decided uniformly

Lemma (Interpretation-independence for T-free)

Fix D and I. If φ is T-free and \mathcal{T}^* , \mathcal{T}'^* are fixed points, then

$$\langle \varphi, 1 \rangle \in \mathcal{T}^* \iff \langle \varphi, 1 \rangle \in \mathcal{T}'^*, \quad \langle \varphi, 0 \rangle \in \mathcal{T}^* \iff \langle \varphi, 0 \rangle \in \mathcal{T}'^*$$

Proof by induction on φ

It thus follows that for any T-free φ , exactly one holds:

- $ightharpoonup \varphi$ is true in **all** fixed points and false in **no** fixed point (grounded true);
- $ightharpoonup \varphi$ is false in **all** fixed points and true in **no** fixed point (grounded false).

Paradoxical: the Liar is true in no FP and false in no FP

Let $\lambda := \neg T(l)$ with $I(l) = \lambda$.

For every \mathcal{T}^* , we have:

$$\langle \lambda, 1 \rangle \notin \mathcal{T}^*$$
 and $\langle \lambda, 0 \rangle \notin \mathcal{T}^*$

Proof:

- ▶ If $\langle \lambda, 1 \rangle \in \mathcal{T}^*$, then $M^* \vDash \lambda$, so $M^* \dashv T(l)$. Hence $\langle I(l), 0 \rangle = \langle \lambda, 0 \rangle \in \mathcal{T}^*$, contradicting consistency.
- ▶ If $\langle \lambda, 0 \rangle \in \mathcal{T}^*$, then $M^* \dashv \lambda$, so $M^* \models T(l)$. Hence $\langle I(l), 1 \rangle = \langle \lambda, 1 \rangle \in \mathcal{T}^*$, again contradicting consistency.

Hence, λ is **undefined** at any fixed point.

Biconsistent: the Truth-teller varies across fixed points

Let
$$\tau := T(t)$$
 with $I(t) = \tau$.

$$\mathcal{T}_+ := \{\langle \tau, 1 \rangle\}$$
 and $\mathcal{T}_- := \{\langle \tau, 0 \rangle\}$

Proof: We have established before that these initial valuations are coherent. In \mathcal{T}_+ , $\langle \tau, 1 \rangle$ forces $M_+ \vDash \tau$, hence $\langle \tau, 1 \rangle \in J(\mathcal{T}_+)$. Similarly for \mathcal{T}_- . By the fixed-point theorem, the J-iterations yield fixed points

$$\mathcal{T}_+^* \supseteq \{\langle \tau, 1 \rangle\}$$

$$\mathcal{T}_{-}^* \supseteq \{\langle \tau, 0 \rangle\}$$

Hence τ is **true** in \mathcal{T}_{+}^{*} and **false** in \mathcal{T}_{-}^{*} .

The Truth-teller at the least fixed point

Let $\tau := T(t)$ with $I(t) = \tau$.

Consider the \varnothing -initial sequence given by $\mathcal{T}_0 = \varnothing$, $\mathcal{T}_{\alpha+1} = J(\mathcal{T}_{\alpha})$, and $\mathcal{T}_{\lambda} = \bigcup_{\beta < \lambda} \mathcal{T}_{\beta}$.

For all ordinals α , neither $\langle \tau, 1 \rangle$ nor $\langle \tau, 0 \rangle$ is in \mathcal{T}_{α} . (prove this by transfinite induction on α)

In particular, if ρ is the first stage with $\mathcal{T}_{\rho} = \mathcal{T}_{\rho+1}$ (the stabilization index), then τ is **unlabelled/undefined** in $\mathcal{T}_{\rho} = \varnothing^*$.

True in some, false in no: $\chi := \tau \vee \neg \tau$ (Exercise)

Let $\chi := \tau \vee \neg \tau$ with τ being the truth-teller sentence.

For every \mathcal{T}^* , $\langle \chi, 0 \rangle \notin \mathcal{T}^*$. Moreover, $\langle \chi, 1 \rangle \in \mathcal{T}_+^*$ and $\langle \chi, 1 \rangle \in \mathcal{T}_-^*$, while χ is unlabelled at the least fixed point \varnothing^* .

Proof:

- $\varphi \lor \psi$ is false iff both disjuncts are false. If $\langle \tau, 0 \rangle \in \mathcal{T}^*$, then $M \vDash \neg \tau$, so the right disjunct is true. Dually if $\langle \tau, 1 \rangle \in \mathcal{T}^*$. Thus χ is **never false**.
- ▶ It is true at \mathcal{T}_+^* (left disjunct true) and at \mathcal{T}_-^* (right disjunct true). Thus χ is **true in some** fixed point.
- At \emptyset^* , both disjuncts are unlabelled (see previous slide), hence so is χ . Thus, χ is true in some, **but not all** fixed points.

Revenge: the 'not true' Liar

'This sentence is not true ([neither true nor false] or false)'

Add a unary operator \sim with clauses:

$$M \vDash \sim \varphi \iff M \nvDash \varphi \qquad M \vDash \sim \varphi \iff M \vDash \varphi$$

Let l^{\sim} name $\sim T(l^{\sim})$ and abbreviate $\chi \coloneqq \sim T(l^{\sim})$ (so $I(l^{\sim}) = \chi$).

Assume **full transparency** for T in the expanded language. Note that $\sim \varphi$ is never gappy.

- ▶ If $M^* \vDash \chi$, then by the clause for \sim , $M^* \nvDash T(l^{\sim})$. But by transparency and $I(l^{\sim}) = \chi$, $M^* \vDash T(l^{\sim}) \iff M^* \vDash \chi$, contradiction.
- ▶ If $M^* \dashv \chi$, then by the clause for \sim , $M^* \models T(l^{\sim})$. By transparency $M^* \models \chi$, so χ is both true and false, contradicting consistency.

No consistent fully transparent model can exist: χ is a **revenge** liar.

 $^{^3 \}text{So}$ we are supposing that we have a model M^* with transparency, even though \sim is actually not monotone, so the fixed-point theorem would not work if we add \sim to the language.

Exercise 1: A sentence of exact stage ω

Work in a language extended with numerals, and add a *fixed* family of binary predicates ${\rm Tr}(n,a)$ intended as 'a codes a sentence that is true at stage n of the *bottom* Kripke chain'.

Formally, fix D, I and define the bottom chain $\mathcal{T}_0 = \emptyset$, $\mathcal{T}_{k+1} = J(\mathcal{T}_k)$, $\mathcal{T}_{\lambda} = \bigcup_{\beta < \lambda} \mathcal{T}_{\beta}$. Interpret $\operatorname{Tr}(n, x)$ so that

$$\langle n, \varphi' \rangle \in I(\operatorname{Tr}) \iff \langle \varphi, 1 \rangle \in \mathcal{T}_n$$

Define the sentence

$$H \equiv \forall n \neg \operatorname{Tr}(n,'H')$$

- (a) Show H is *not* labelled at any finite stage n.
- (b) Show H becomes decided at stage ω of the bottom chain and remains stable thereafter.
- (c) Determine whether H is true or false at stage ω .

Exercise 2: Non- ω -continuity of J

A monotone F is ω -continuous if $F(\bigcup_n X_n) = \bigcup_n F(X_n)$ for every increasing ω -chain (X_n) .

(a) Prove J is $not \, \omega$ -continuous by constructing an increasing chain $\mathcal{T}_0 \subseteq \mathcal{T}_1 \subseteq \cdots$ with union U such that

$$J(U) \neq \bigcup_{n} J(\mathcal{T}_n)$$

(b) Explain how your counterexample connects to Exercise 1.

Another exercise

Extend the language by a binary operator • with semantic clauses:

$$\begin{split} M \vDash \phi \bullet \psi &\iff M \dashv \phi \\ & \text{ or } M \vDash \psi \text{ or } \left(M \nvDash \phi \ \land \ M \nvDash \psi \ \land \ M \not \dashv \phi \ \land \ M \not \dashv \psi \right) \\ M \dashv \phi \bullet \psi &\iff M \vDash \phi \text{ and } M \dashv \psi. \end{split}$$

Show that, in the expanded language, one can generate a revenge paradox with ullet assuming full transparency for T.